**Contents**show

## Is the order of transformations important?

**The order does not matter**. Algebraically we have y=12f(x3). Of our four transformations, (1) and (3) are in the x direction while (2) and (4) are in the y direction. The order matters whenever we combine a stretch and a translation in the same direction.

## What is the rule for the transformation?

The function translation / transformation rules: **f (x) + b shifts the function b units upward.** **f (x) – b shifts the function b units downward**. f (x + b) shifts the function b units to the left.

## Does order matter when performing a composition of two transformations of the same type explain?

A **composite transformation** is when two or more transformations are performed on a figure (called the preimage) to produce a new figure (called the image). … Therefore, the order is important when performing a composite transformation.

## Which comes first translation or reflection?

A glide reflection is a composition of transformations.In a glide reflection, **a translation is first performed on the figure**, then it is reflected over a line. Therefore, the only required information is the translation rule and a line to reflect over. A common example of glide reflections is footsteps in the sand.

## How can the transformation be amended such that the translation can occur before the reflection and have the image remain in the same position?

How can the transformation be amended such that the translation can occur before the reflection and have the image remain in the same position? **Translate the pre-image down 4 and right 3 and then reflect the figure over the x-axis.**

## How do you describe the transformation of a function?

A function transformation **takes whatever is the basic function f (x)** and then “transforms” it (or “translates” it), which is a fancy way of saying that you change the formula a bit and thereby move the graph around. … Moving the function down works the same way; f (x) – b is f (x) moved down b units.

## What do you understand by transformation?

A transformation is **a dramatic change in form or appearance**. An important event like getting your driver’s license, going to college, or getting married can cause a transformation in your life.

## What are the rules for translations rotations and reflections?

Reflection is flipping an object across a line without changing its size or shape. Rotation is rotating an object about a fixed point without changing its size or shape. **Translation is sliding a** figure in any direction without changing its size, shape or orientation.

## Does the order of rotation and translation matter?

In a composite transformation, **the order of the individual transformations is important**. For example, if you first rotate, then scale, then translate, you get a different result than if you first translate, then rotate, then scale.

## Does order matter in rigid transformations?

With a rigid transformation, figures like polygons have corresponding sides of the same length and corresponding angles of the same measure. … There are many ways to show that 2 figures are congruent since many sequences of transformations take a figure to the same image. However, **order matters in a set of instructions**.